

AGROSTOPHYLLIN, A NATURALLY OCCURRING PHENANTHROPYRAN DERIVATIVE FROM *AGROSTOPHYLLUM KHASIYANUM*

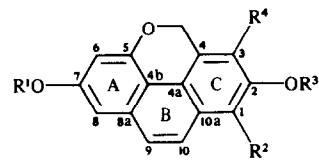
P. L. MAJUMDER and ESFANDIAR SABZABADI

Department of Chemistry, University College of Science, Calcutta 700 009, India

(Received 10 November 1987)

Kew Word Index—*Agrostophyllum Khasiyanum*; Orchidaceae; agrostophylin; phenanthropyran derivative.

Abstract—Agrostophylin, the first naturally occurring phenanthropyran derivative, was isolated from the orchid *Agrostophyllum khasiyanum*. It was shown to be 2,6-dimethoxy-7-hydroxy-5H-phenanthro[4,5-*bcd*]pyran (**1a**) mainly from spectroscopic evidence.


INTRODUCTION

As part of our general programme of chemical investigation of Indian orchids we reported [1–18] earlier the isolation of about 24 new compounds from a series of Himalayan orchids. These compounds represent several structural types like bibenzyls [1, 2], phenanthrenes [3–7, 19], 9,10-dihydrophenanthrenes [8], 9,10-dihydrophenanthropyrans [9–14] and pyrones [9–11, 15], triterpenoids [16, 17] and steroids [18]. Our continued search for phytochemicals from the same source has resulted in the isolation of yet another new compound, designated as agrostophylin, from the orchid *Agrostophyllum khasiyanum*. The structure of agrostophylin was established as **1a** from the following evidence.

RESULTS AND DISCUSSION

Agrostophylin, $C_{17}H_{14}O_4$ (M^+ 282), mp 86°, was isolated from the methanolic extract of the whole plant of *A. khasiyanum*. The UV spectrum of the compound, λ_{max} 226, 268 and 300 nm ($\log \epsilon$ 4.60, 4.69 and 4.13) showed a striking resemblance to those of oxygenated phenanthrene derivatives [20]. The phenolic nature of agrostophylin was indicated by its characteristic colour reactions, alkali-induced bathochromic shifts of its UV maxima [$\lambda_{\text{max}}^{0.1(\text{NaOH}-\text{EtOH})}$ 223, 275 and 306 nm ($\log \epsilon$ 4.47, 4.72 and 4.21)], and by its IR spectrum showing strong absorption band at 3380 cm^{-1} . The presence of a single phenolic hydroxyl group in agrostophylin was confirmed by its PMR spectrum exhibiting a one-proton singlet at δ 5.74 (disappeared on deuterium exchange), and by the formation of a monoacetyl derivative, $C_{19}H_{16}O_5$ (M^+ 324), mp 125°, with acetic anhydride and pyridine. The ^1H NMR spectrum of agrostophylin also confirmed the presence of two aromatic methoxyl groups (δ 3.88, 6H, *s*) in the compound. The two-proton singlet at δ 5.64 is reminiscent of the two oxymethylene protons of the 9,10-dihydrophenanthropyrans like coelogin (**1c**) [9], flavidin (**1d**) [13], flavidinin (**1f**) [10], isoflavidinin (**1h**) [11], imbricatin (**1j**) [12] and flaccidin (**1l**) [14]. The

downfield shift of this signal by ~ 0.4 ppm of agrostophylin compared with those of the above compounds may be attributed to the stronger aromatic phenanthrene moiety in agrostophylin. The ^1H NMR spectrum of agrostophylin also displayed signals for five aromatic protons, none of which appeared below δ 8.5. This ruled out the presence of any proton at C-4 and C-5 of agrostophylin and suggested the placement of the oxymethylene bridge between these two carbon atoms. Two of the aromatic protons of agrostophylin appeared at δ 7.56 (*s*) which corresponded to the 9- and 10-protons of a phenanthrene system [21]. The two one-proton *meta*-coupled doublets at δ 6.72 ($J = 2.5$ Hz) and 6.86 ($J = 2.5$ Hz) were assigned to H-6 and H-8 flanked by a methoxyl group at C-7, and the one-proton singlet at δ 7.26 was attributed to

1a $R^1 = \text{Me}$; $R^2 = R^3 = \text{H}$; $R^4 = \text{OMe}$

1b $R^1 = \text{Me}$; $R^2 = \text{H}$; $R^3 = \text{Ac}$; $R^4 = \text{OMe}$

1c $R^1 = \text{H}$; $R^2 = \text{OMe}$; $R^3 = \text{Me}$; $R^4 = \text{OH}$, 9,10-Dihydro

1d $R^1 = R^2 = R^3 = R^4 = \text{H}$, 9,10-Dihydro

1e $R^1 = R^3 = \text{Ac}$; $R^2 = R^4 = \text{H}$, 9,10-Dihydro

1f $R^1 = R^2 = R^4 = \text{H}$; $R^3 = \text{Me}$, 9,10-Dihydro

1g $R^1 = \text{Ac}$; $R^2 = R^4 = \text{H}$; $R^3 = \text{Me}$, 9,10-Dihydro

1h $R^1 = \text{Me}$; $R^2 = R^3 = R^4 = \text{H}$, 9,10-Dihydro

1i $R^1 = \text{Me}$; $R^2 = R^4 = \text{H}$; $R^3 = \text{Ac}$, 9,10-Dihydro

1j $R^1 = R^2 = R^3 = \text{H}$; $R^4 = \text{OMe}$, 9,10-Dihydro

1k $R^1 = R^3 = \text{Ac}$; $R^2 = \text{H}$; $R^4 = \text{OMe}$, 9,10-Dihydro

1l $R^1 = R^2 = \text{H}$; $R^3 = \text{Me}$; $R^4 = \text{OH}$, 9,10-Dihydro

1m $R^1 = \text{Ac}$; $R^2 = \text{H}$; $R^3 = \text{Me}$; $R^4 = \text{OAc}$, 9,10-Dihydro

H-1. The placement of the hydroxyl group at C-2 in agrostophyllin was supported by the downfield shift of the signal at δ 7.26 by 0.18 ppm in the ^1H NMR spectrum of its acetyl derivative which has its other aromatic protons appearing essentially at the same positions as those of agrostophyllin.

More compelling evidence in support of the structure **1a** for agrostophyllin was provided by the ^{13}C NMR spectral data of the compound and its acetyl derivative (**1b**). The degree of protonation of each carbon atom was determined by APT experiments [22]. The chemical shifts of the carbon atoms of **1a** and **1b** (Table 1) were assigned by comparison with the δ_c values of structurally similar compounds taking into consideration the additive parameters of the functional groups on the benzoid system [23]. Thus the oxymethylene carbon of agrostophyllin appeared essentially at the same position (δ_c 63.46) as the corresponding carbon atoms of coelogin (**1c**) [9], imbricatin diacetate (**1k**) [12] and flaccidin diacetate (**1m**) [14], all having a substituent at their C-3 position. Absence of a substituent at C-3 in agrostophyllin would have caused its oxymethylene carbon appearing at the normal position (δ_c 67–68) as in flavidin diacetate (**1e**) [13], flavidinin acetate (**1g**) [10] and iso-flavidinin acetate (**1i**) [11]. That this substituent at C-3 in agrostophyllin is a methoxyl rather than a hydroxyl group was supported by the carbon chemical shifts of its aromatic methoxyl groups, one of which was shifted downfield to δ_c 61.16, while the other appeared at the normal position (δ_c 54.90). In the light of our earlier observations [1–12, 14, 24] that carbon atoms of aromatic methoxyl groups having at least one *ortho*-hydrogen atom appear at the normal position (δ_c 54–56), while those of such groups flanked by two *ortho*-substituents are shifted downfield by ~5–6 ppm, the signal at δ_c 61.16 of agrostophyllin corresponded to a methoxyl group at its C-3 position, and the other signal at δ_c 54.90

was due to its C-7 methoxyl function. This was further corroborated by the expected upfield shift of its C-10a (δ_c 125.21), which would have normally appeared at $\sim\delta_c$ 131 without any oxygen substituent at C-3 and C-1. The placement of the hydroxyl group at C-2 of agrostophyllin was in conformity with the observed downfield shifts of C-1, C-3 and C-4a of its acetyl derivative. C-9 and C-10 appeared at the normal positions of the corresponding carbon atoms of a phenanthrene system [3–6]. Placement of a methoxyl group at C-7 is consistent with the highly upfield position (δ_c 100.82) of C-6 which is flanked by two *ortho*-oxygen substituent, as well as with the expected shielding of C-4b compared with corresponding carbon atoms of phenanthrene derivatives having a 7-acetoxy function [3]. An interesting feature of agrostophyllin is the upfield shift of its C-8 compared with the corresponding carbon atom of the 9,10-dihydrophenanthropyran analogue isoflavidinin acetate (**1i**) [11]. Such difference may be presumably due to a greater shielding at C-8 by the oxymethylene function involving a more stable *para*-quinonoid canonical form in the fully aromatic phenanthrene system than that in the 9,10-dihydro analogue.

Agrostophyllin is thus the first naturally occurring phenanthropyran. In terms of systematic nomenclature it may be designated as 2,6-dimethoxy-7-hydroxy-5H-phenanthro[4,5-*bcd*] pyran (**1a**), although the phenanthrene numbering system has been followed in this paper for convenience of comparison of spectral data.

EXPERIMENTAL

Mps: uncorr. CC: silica gel (60–120 mesh). TLC: silica gel G; UV: 95% aldehyde-free EtOH. IR: KBr. ^1H NMR: 100 and 300 MHz, CDCl_3 , TMS as int. standard. ^{13}C NMR: 75 MHz, CDCl_3 , TMS; MS: direct inlet, 70 eV. All the analytical samples were routinely dried over P_2O_5 for 24 hr *in vacuo* and were tested for purity by TLC and mass spectrometry. Na_2SO_4 was used for drying organic solvents and the petrol used had bp 60–80°.

*Isolation of agrostophyllin (**1a**).* Air-dried powdered whole plant of *A. khasianum* (2 kg) was soaked in MeOH (5 l) for 3 weeks. The MeOH extract was then drained out and concd under red. pres. to about 100 ml, diluted with H_2O (750 ml) and exhaustively extracted with Et_2O . The Et_2O layer was then extracted with 2 M aq. NaOH. The aq. alkaline soln was then acidified with conc HCl in the cold and the liberated solid extracted with Et_2O , washed with H_2O , dried and the solvent removed. The residue was chromatographed. The petrol-EtOAc (20:1) eluate gave a gummy solid which on rechromatography gave **1a** (0.1 g), crystallized from petrol-EtOAc mixture, mp 86°. (Found: C, 72.31; H, 4.94; $\text{C}_{17}\text{H}_{14}\text{O}_4$ requires: C, 72.34; H, 4.96%). **1a** gives intense blue colouration with phosphomolybdc acid reagent. IR ν_{max} cm⁻¹: 3380 (OH), 1630, 1605, 1500, 850, 820 and 780 (aromatic nucleus); MS m/z (rel. int.): 282 (M^+ , 100), 281 (27), 267 (25), 266 (20), 251 (11), 239 (14), 224 (6), 223 (7), 211 (8), 196 (4), 179 (3), 168 (5), 152 (7), 141 (6), 139 (12) and 111 (12).

*Agrostophyllin acetate (**1b**).* Agrostophyllin (0.05 g) was acetylated with Ac_2O and pyridine in the usual manner to give **1b** (0.048 g), crystallized from petrol-EtOAc mixture, mp 125°. (Found: C, 70.31; H, 4.90; $\text{C}_{19}\text{H}_{16}\text{O}_5$ requires: C, 70.37; H, 4.93%). UV λ_{max} nm: 231, 268 and 299 ($\log \epsilon$ 4.71, 4.62 and 4.20); IR ν_{max} cm⁻¹: 1755, 1280 and 1255 (OAc), 1630, 1600, 830 and 790 (aromatic nucleus); ^1H NMR: δ 2.37 (3H, δ ; OCOMe), 3.86

Table 1. The carbon chemical shifts of agrostophyllin (**1a**) and agrostophyllin acetate (**1b**)

C	Chemical shifts (δ values)*		Chemical shifts (δ values)*		
	1a	1b	C	1a	1b
1	110.03	119.33	8	101.30 ^b	101.49 ^d
2	147.31	142.14	8a	130.43	131.60
3	141.65	145.08	9	125.36 ^c	125.60 ^e
4	118.77 ^a	119.95	10	125.26 ^c	125.44 ^c
4a	117.92 ^a	122.39	10a	125.21	124.23
4b	111.78	111.42	—O—CH ₂ —	63.46	63.71
5	151.95	152.85	—OMe(C-3)	61.16	60.95
6	100.82 ^b	101.11 ^d	—OMe(C-7)	54.90	54.98
7	158.49	159.62	—OAc	—	168.54, 20.24

* Values are in ppm downfield from TMS: $\delta_{(\text{TMS})} = \delta_{(\text{CDCl}_3)} + 76.9$ ppm. ^{a–e} Values are interchangeable.

and 3.89 (each 3H, s, 2Ar-OMe), 5.65 (2H, s, Ar-O-CH₂-Ar), 6.72 (1H, d, $J=2.5$ Hz, H-6), 6.87 (1H, d, $J=2.5$ Hz, H-8), 7.44 (1H, s, H-1) and 7.58 (2H, s, H-9 and H-10).

Acknowledgements—We thank Dr J. M. Wilson (University of Manchester, U.K.) for the mass spectra and Mr A. K. Sarkar (Department of Chemistry, University of Cambridge, U.K.) for ¹H NMR. E. S. is thankful to the Ministry of Education, Government of Islamic Republic of Iran for financial assistance.

REFERENCES

1. Majumder, P. L. and Joardar, M. (1984) *Indian J. Chem.* **23B**, 1040.
2. Majumder, P. L. and Sen, R. C. (1987) *Phytochemistry* **26**, 2121.
3. Bhandari, S. R., Kapadi, A. H., Majumder, P. L., Joardar, M. and Shoolery, J. N. (1985) *Phytochemistry* **24**, 801.
4. Majumder, P. L., Kar, A. and Shoolery, J. N. (1985) *Phytochemistry* **24**, 2083.
5. Majumder, P. L. and Sen, R. C. (1987) *Indian J. Chem.* **26B**, 18.
6. Majumder, P. L. and Kar, A. (1987) *Phytochemistry* **26**, 1127.
7. Majumder, P. L. and Banerjee, S. (1988) *Phytochemistry* **27**, 245.
8. Majumder, P. L. and Joardar, M. (1985) *Indian J. Chem.* **24B**, 1192.
9. Majumder, P. L., Bandyopadhyay, D. and Joardar, S. (1982) *J. Chem. Soc. Perkin Trans I*, 1131.
10. Majumder, P. L. and Datta, N. (1982) *Indian J. Chem.* **21B**, 534.
11. Majumder, P. L., Sarkar, A. K. and Chakraborti, J. (1982), *Phytochemistry* **21**, 2713.
12. Majumder, P. L. and Sarkar, A. K. (1982) *Indian J. Chem.* **21B**, 829.
13. Majumder, P. L., Datta, N., Sarkar, A. K. and Chakraborti, J. (1982) *J. Nat. Prod.* **45**, 730.
14. Majumder, P. L. and Maitii, D. C. (1988) *Phytochemistry* (in press).
15. Majumder, P. L. and Datta, N. (1984) *Phytochemistry* **23**, 671.
16. Majumder, P. L. and Pal, A. (1985) *Phytochemistry* **24**, 2120.
17. Majumder, P. L., Pal, A. and Lahiri, S. (1987) *Indian J. Chem.* **26B**, 297.
18. Majumder, P. L. and Chakraborti, J. (1985) *Tetrahedron* **41**, 4973.
19. Stermitz, F. R., Suess, T. R., Schauer, C. K., Anderson, O. P. and Bye (Jr), R. A. (1983) *J. Nat. Prod.* **46**, 417.
20. Letcher, R. M. and Nhamo, L. R. M. (1971) *J. Chem. Soc. C* 3070.
21. Letcher, R. M. and Wong, R. M. (1978) *J. Chem. Soc. Perkin Trans I* 739.
22. Patt, S. L. and Shoolery, J. N. (1982) *J. Magn. Reson.* **46**, 535.
23. Stothers, J. B. (1972) *C-13 NMR Spectroscopy*. Academic Press, New York.
24. Wenkert, E., Gottlieb, H. E., Gottlieb, O. R., Pereira Das, M. O. and Formiga, M. D. (1976) *Phytochemistry*, **15**, 1547.